
2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 1/9

Raspberry Pi Projects

Temperature Log

What you will make
The system on a chip (SoC) of the Raspberry Pi has a temperature sensor that can be
used to measure its temperature from the command line. It can provide information on
how much heat the chip has generated during operation and also report on the
temperature of the environment. This project’s aim is to create a simple Python script
that can run automatically as you boot up your Raspberry Pi, take measurements from
the temperature sensor at given intervals, and write them into log �les that can be
viewed later. You’ll also be able to view the data as an interactively plotted graph.

What you will learn
By completing the Temperature project you will learn:

How to run system commands in Python
How to write data to a �le
How to interactively plot data with matplotlib
How to set scripts to run automatically using crontab

This resource covers elements from the following strands of the Raspberry Pi Digital
Making Curriculum (https://www.raspberrypi.org/curriculum/):

What you will need

https://www.raspberrypi.org/curriculum/

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 2/9

Software

Software installation

To install the software you need, run the following command in the terminal:

sudo apt-get install python3-matplotlib

Temperature Log
The system on a chip (SoC) of the Raspberry Pi has a temperature sensor that can be
used to measure its temperature from the command line. It can provide information on
how much heat the chip has generated during operation, and can also report on the
temperature of the environment. This project’s aim is to create a simple script that can
run automatically as you boot up your Raspberry Pi, take measurements from the
temperature sensor at given intervals, and write them into log �les that can be viewed
later.

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 3/9

Creating a Python script to monitor
temperature

Open a new Python 3 shell by going to Menu > Programming > Python 3
(IDLE).

Now create a new Python script by clicking on File > New File.

You can use the GPIO Zero module to �nd the CPU temperature. First you’ll need
to import the CPUTemperature class:

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 4/9

 from gpiozero import CPUTemperature

Then you can create a cpu object:

 cpu = CPUTemperature()

Save and run this program (press Ctrl + S and then F5) and then swap over into
the shell. Here, you can easily query the CPU temperature.

>>> cpu.temperature

32.552

Writing the data to a CSV �le
It would be useful if that data could be stored somewhere. A CSV (comma-separated
values) �le is ideal for this, as it can be used by applications like Excel and LibreO�ce.

You’ll want to log the date and time while getting the CPU temperatures, so you’ll
need some extra libraries for this. Add this to your imports:

 from time import sleep, strftime, time

These extra methods let you pause your program (sleep), get today’s date as a
string (strftime), and get the exact time in what’s known as UNIX time
(https://en.wikipedia.org/wiki/Unix_time) (time).

To write to a �le, you �rst need to create it. At the end of your �le, add the
following line:

 with open("cpu_temp.csv", "a") as log:

https://en.wikipedia.org/wiki/Unix_time

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 5/9

This creates a new �le called cpu_temp.csv and opens it with the name log. It also
opens it in append mode, so that lines are only written to the end of the �le.

Now, you’ll need to start an in�nite loop that will run until you kill the program with
Ctrl + C:

 with open("cpu_temp.csv", "a") as log:

 while True:

Inside the loop, you can get the temperature and store it as a variable.

 with open("cpu_temp.csv", "a") as log:

 while True:

 temp = cpu.temperature

Now you want to write both the current date and time, plus the temperature, to
the CSV �le:

 with open("cpu_temp.csv", "a") as log:

 while True:

 temp = cpu.temperature

 log.write("{0},{1}\n".format(strftime("%Y-%m-%d %H:%M:%S"),str(temp)))

That line’s a little complicated, so let’s break it down a bit:

log.write() will write whatever string is in the brackets to the CSV �le.
"{0},{1}\n" is a string containing two placeholders separated by a comma,
and ending in a new line.
strftime("%Y-%m-%d %H:%M:%S") is inserted into the �rst placeholder. It’s
the current date and time as a string.
str(temp) is the CPU temperature converted to a string, which is written
into the second placeholder after the comma.

Lastly, you can add a single line to the end of your �le to pause the script between
writes. Here it’s pausing for one second, but you can use any interval that you
want:

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 6/9

 sleep(1)

The entire script should now look like this:

 from gpiozero import CPUTemperature

 from time import sleep, strftime, time

 with open("cpu_temp.csv", "a") as log:

 while True:

 temp = cpu.temperature

 log.write("{0},{1}\n".format(strftime("%Y-%m-%d %H:%M:%S"),str(temp)))

 sleep(1)

Live-graphing the data
You can produce a graph of CPU temperatures which will update as the data is recorded.
For this, you’ll need the matplotlib library. The instructions for installing this are here
(https://github.com/raspberrypilearning/temperature-log/blob/master/software.md).

First of all, import the matplotlib library where your other imports are:

 import matplotlib.pyplot as plt

The next three lines can go after your imports. They tell matplotlib that you’ll be
doing interactive plotting, and also create the two lists that will hold the data to
be plotted:

 plt.ion()

 x = []

 y = []

https://github.com/raspberrypilearning/temperature-log/blob/master/software.md

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 7/9

The next lines all go into your while True loop, before the CSV is written, but after
the temp = get_temp() line. Firstly, you add the current temperature to the end of
the y list, and the time to the end of the x list:

 y.append(temp)

 x.append(time())

Next, the plot needs to be cleared, and then the points and lines calculated:

 plt.clf()

 plt.scatter(x,y)

 plt.plot(x,y)

Lastly, the plot can be drawn:

 plt.draw()

Run your program and you should see the graph being interactively drawn. Open
up some programs, such as Minecraft or Mathematica, and watch the CPU
temperature increase.

Automating the script
It might be useful to have this script running when the Raspberry Pi starts up. To do this,
it’s best to clean up the script a little, so that you can easily comment out the lines that
draw the graph. Below is the same script tidied into functions, and with the graph-
drawing line commented out:

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 8/9

from gpiozero import CPUTemperature

from time import sleep, strftime, time

import matplotlib.pyplot as plt

cpu = CPUTemperature()

plt.ion()

x = []

y = []

def write_temp(temp):

 with open("cpu_temp.csv", "a") as log:

 log.write("{0},{1}\n".format(strftime("%Y-%m-%d %H:%M:%S"),str(temp)))

def graph(temp):

 y.append(temp)

 x.append(time())

 plt.clf()

 plt.scatter(x,y)

 plt.plot(x,y)

 plt.draw()

while True:

 temp = cpu.temperature

 write_temp(temp)

graph(temp)

 sleep(1)

Automating scripts is simple with crontab. This is basically a �le where
commands can be placed that will run at certain times or after certain events. To
begin, open up a terminal window (press Ctrl + Alt + T).

To edit the crontab, you just type:

 crontab -e

Scroll to the bottom of the �le and add this single line:

 @reboot python3.4 /home/pi/temp_monitor.py

2017/10/1 Raspberry Pi Projects

https://projects.raspberrypi.org/en/projects/temperature-log/print 9/9

This assumes that your script is called temp_monitor.py and that it’s saved in your
home directory.

Now reboot your Raspberry Pi. Give it a little time to run, then type the following in
a terminal window:

 cat cpu_temp.csv

This will enable you to see the contents of the CSV �le.

If you want to see a graph, then just uncomment the graph(temp) line using IDLE
and run the �le.

What next?
Why not have a look at the Getting Started with the Twitter API
(https://projects.raspberrypi.org/en/projects/getting-started-with-the-twitter-
api/) resource, and have your Raspberry Pi tweet you when the CPU temperature
gets too high?
There are other ways of sensing temperature, and a host of other environmental
variables. Have a look at Getting started with the Sense HAT
(https://projects.raspberrypi.org/en/projects/getting-started-with-the-sense-
hat) for some more ideas.

Published by the Raspberry Pi Foundation – www.raspberrypi.org

Licensed under Creative Commons "Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
Full project source code available at https://github.com/RaspberryPiLearning/temperature-log

https://projects.raspberrypi.org/en/projects/getting-started-with-the-twitter-api/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-sense-hat

